Спектр солнечного излучения: описание, особенности и интересные факты

Как защитить себя от солнечной радиации

Следует понимать, что главная защита от вредного воздействие радиации это ограничение времени пребывания под прямыми солнечными лучами. Принимать солнечные ванны можно только в утренние и вечерние часы, когда высота светила над горизонтом не велика и атмосфера земли, создает дополнительную защиту агрессивному излучению.

Использование солнцезащитных кремов, частично спасает кожу от ожогов, но не дает должного эффекта против уфльтрафиолета самого короткого диапазона.

Поэтому, если нет возможности переждать полуденную жару в помещении, единственной надежной защитой, является использование одежды светлых оттенков, головного убора, солнцезащитных очков. Несмотря на высокую температуру воздуха, ткань должна закрывать большую часть тела и не допускать длительного контакта отдельных участков кожи с солнечным излучением.

Нужно помнить, что активное полуденное солнце опасно не только ожогами, но и прежде всего нарушением обмена веществ, сбоем общего гормонального фона, как следствие риском развития онкозаболеваний кожи и кроветворной системы организма.

На настоящий момент времени, доказано, что солнечный загар является защитной функцией кожи и никакого положительного эффекта в себе не несет. Поэтому нет ни какой необходимости рисковать здоровьем, ради сомнительной красоты. Человеческому организму, для поддержания необходимого уровня воздействия ультрафиолета, вполне достаточно одного часа утром на пляже, излучения получаемого в течение дня и вечерней прогулки.

Как защититься

с осторожностью загорать на открытых пространствах;
во время жаркой погоды скрываться в тени под рассеянными лучами. В особенности это касается маленьких детей и пожилых людей, страдающих туберкулезом и заболеваниями сердца.

Виды излучения

В ходе наблюдений ученые выяснили, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц – корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы – солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы – солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего, они связаны с особыми областями солнечной короны – коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связанны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество геофизических явлений. От вредного влияния излучения Солнца нас защищает магнитосфера и атмосфера Земли.

Измерение

Исследователи могут измерить интенсивность солнечного света с помощью регистратора солнечного света , пиранометра или пиргелиометра

Для того, чтобы рассчитать количество солнечного света , достигающего земли, как эксцентричность в земной эллиптической орбите и на атмосферу Земли, должны быть приняты во внимание. Внеземная солнечная освещенность ( E ext ), скорректированная с учетом эллиптической орбиты с использованием номера дня года (dn), в хорошем приближении дается формулой

EеИкстзнак равноEsc⋅(1+0,033412⋅потому что⁡(2πdп-3365)),{\ displaystyle E _ {\ rm {ext}} = E _ {\ rm {sc}} \ cdot \ left (1 + 0,033412 \ cdot \ cos \ left (2 \ pi {\ frac {{\ rm {dn}}) — 3} {365}} \ right) \ right),}

где 1 января dn = 1; 1 февраля dn = 32; 1 марта dn = 59 (кроме високосных, где dn = 60) и т. д. В этой формуле используется dn – 3, потому что в наше время , наиболее близкий к Солнцу и, следовательно, максимальный E ext происходит примерно 3 января каждого года. Значение 0,033412 определяется с учетом того, что отношение между квадратом перигелия (0,98328989 AU) и афелием (1,01671033 AU) в квадрате должно быть приблизительно 0,935338.

Постоянная солнечной освещенности ( E sc ) равна 128 × 10 3  люкс . Прямая нормальная освещенность ( E dn ), скорректированная с учетом ослабляющих эффектов атмосферы, определяется по формуле:

Edпзнак равноEеИксте-cм,{\ displaystyle E _ {\ rm {dn}} = E _ {\ rm {ext}} \, e ^ {- cm},}

где с представляет собой атмосферное исчезновение и м является относительной оптической воздушной массой . Атмосферное вымирание привело к снижению количества люксов примерно до 100 000 люкс.

Общее количество энергии, полученной на уровне земли от Солнца в зените, зависит от расстояния до Солнца и, следовательно, от времени года. Это примерно на 3,3% выше среднего в январе и на 3,3% ниже в июле (см. Ниже). Если внеземное солнечное излучение составляет 1367 Вт на квадратный метр (значение, когда расстояние Земля-Солнце составляет 1 астрономическую единицу ), то прямой солнечный свет на поверхности Земли, когда Солнце находится в зените, составляет около 1050 Вт / м 2 , но общее количество (прямое и косвенное из атмосферы), падающее на землю, составляет около 1120 Вт / м 2 . Что касается энергии, солнечный свет на поверхности Земли составляет от 52 до 55 процентов инфракрасного (выше 700 нм ), от 42 до 43 процентов видимого (от 400 до 700 нм) и от 3 до 5 процентов ультрафиолетового (ниже 400 нм). В верхней части атмосферы солнечный свет примерно на 30% интенсивнее, имеет около 8% ультрафиолета (УФ), причем большая часть дополнительного ультрафиолета состоит из биологически разрушающего коротковолнового ультрафиолета.

Прямой солнечный свет имеет световую отдачу около 93  люмен на ватт лучистого потока . Умножение показателя 1050 ватт на квадратный метр на 93 люмена на ватт показывает, что яркий солнечный свет обеспечивает освещенность приблизительно 98 000 люкс ( люмен на квадратный метр) на перпендикулярной поверхности на уровне моря. Освещенность горизонтальной поверхности будет значительно меньше, если Солнце находится не очень высоко в небе. В среднем за день наибольшее количество солнечного света на горизонтальной поверхности приходится на январь на Южном полюсе (см. Инсоляцию ).

Разделив энергетическую яркость 1050 Вт / м 2 на размер солнечного диска в стерадианах, мы получим среднюю яркость 15,4 МВт на квадратный метр на стерадиан. (Однако яркость в центре солнечного диска несколько выше, чем в среднем по всему диску из-за потемнения к краю .) Умножение этого на π дает верхний предел освещенности, которую можно сфокусировать на поверхности с помощью зеркал: 48,5 МВт / м 2 .

Культурные аспекты

Эдуард Мане : Le déjeuner sur l’herbe (1862-63)

Эффект солнечного света имеет отношение к живописи , что подтверждается, например, работами Эдуарда Мане и Клода Моне над пейзажами и пейзажами.

Téli verőfény («Зимнее солнце») Ласло Меднянского , начало 20 века.

Многие люди считают, что прямой солнечный свет слишком яркий для комфорта, особенно при чтении с белой бумаги, на которую прямо светит солнечный свет. Действительно, прямой взгляд на Солнце может нанести долговременный ущерб зрению. Чтобы компенсировать яркость солнечного света, многие люди носят солнцезащитные очки . Автомобили , многие шлемы и кепки оснащены козырьками, которые закрывают прямой обзор Солнца, когда оно находится под низким углом. Солнечный свет часто блокируется от проникновения в здания за счет использования стен , оконных жалюзи , навесов , ставен , занавесок или ближайших тенистых деревьев

Воздействие солнечного света необходимо биологически для образования в коже витамина D , жизненно важного соединения, необходимого для укрепления костей и мышц тела.

В более холодных странах многие люди предпочитают более солнечные дни и часто избегают тени . В более жарких странах верно обратное; в полдень многие люди предпочитают оставаться дома, чтобы сохранять прохладу. Если они действительно выходят на улицу, они ищут тени, которую могут обеспечить деревья, зонтики и т. Д.

Во многих мировых религиях, таких как индуизм , Солнце считается богом, поскольку оно является источником жизни и энергии на Земле. Это также легло в основу религии в Древнем Египте .

Солнечные ванны

Загорающие в Финляндии

Загорать — это популярный вид досуга, когда человек сидит или лежит под прямыми солнечными лучами. Люди часто загорают в удобных местах, где много солнечного света. Некоторые общие места для принятия солнечных ванн включают пляжи , открытые бассейны , парки , сады и тротуарные кафе . Загорающие обычно носят ограниченное количество одежды, а некоторые просто раздеваются . Для некоторых альтернативой солнечным ваннам является использование солярия , излучающего ультрафиолетовый свет, который можно использовать в помещении независимо от погодных условий. Солярии запрещены в ряде штатов мира.

Для многих людей со светлой кожей одной из целей принятия солнечных ванн является затемнение цвета кожи (получение солнечного загара), поскольку в некоторых культурах это считается привлекательным и ассоциируется с активным отдыхом, отпуском / отпуском и здоровьем. Некоторые люди предпочитают загорать обнаженными, чтобы получить «полный» или «ровный» загар, иногда как часть определенного образа жизни.

Контролируемая гелиотерапия или солнечные ванны использовались для лечения псориаза и других заболеваний.

Загар кожи достигается за счет увеличения темного пигмента внутри клеток кожи, называемых меланоцитами , и представляет собой автоматический механизм реакции организма на достаточное воздействие ультрафиолетового излучения от Солнца или искусственных солнечных лучей. Таким образом, загар постепенно исчезает со временем, когда человек больше не подвергается воздействию этих источников.

Зона лучистого переноса

Эта зона находится сразу после ядра и простирается на 0,7 солнечного радиуса. В этом слое нет тепловой конвекции, но солнечная материя очень горячая и достаточно плотная, чтобы тепловое излучение запросто передавало интенсивное тепло из ядра наружу. В основном она включает ионы водорода и гелия, испускающие фотоны, которые проходят короткое расстояние и поглощаются другими ионами.


Температура этого слоя пониже, примерно от 7 миллионов градусов ближе к ядру до 2 миллионов градусов на границе конвективной зоны. Плотность тоже падает в сто раз с 20 г/см³ ближе к ядру до 0,2 г/см³ у верхней границы.

Связь урожайности сельскохозяйственных растений и солнечной активности

Вопрос о связи урожаев сельскохозяйственных культур с солнечной активностью имеет длинную историю. Известно, что еще в III в. до н. э. Катон Старший, римский писатель, заметил, что цены на рожь зависели от солнечной активности (от «помрачения Солнца»). При высокой солнечной активности урожаи ржи были лучше и поэтому цены на рожь снижались.

Связь между урожайностью и солнечной активностью осуществляется прежде всего через атмосферную циркуляцию, от которой зависит число осадков и температура. Но связь между солнечной активностью и атмосферной циркуляцией меняет свой характер (знак) примерно каждые 40 лет.

Прорастание семени

Недостаточность или отсутствие освещения очень пагубно сказываются на развитии культур по причине деактивации процесса фотосинтеза и, как следствие, ограниченного образования органических веществ. В результате растения вырастают слабыми, и у них наблюдаются различные дефекты роста и развития: вытянутость побегов и междоузлий, бледная окраска зеленой массы, уменьшение размеров листьев, скудность цветообразования или полное отсутствие цветения, пожелтение и опадание нижних листьев и т. д.

Хронический дефицит солнечной энергии приводит к гибели растений.

Избыточное освещение

Культуры могут испытывать недостаток света при короткой продолжительности светового дня, а также при недостаточной интенсивности самого освещения. По требовательности к освещению растения делятся на:

  • светолюбивые (гелиофиты);
  • теневыносливые (сциогелиофиты);
  • тенелюбивые (сциофиты).

К первой группе относятся культуры, которые хорошо растут и развиваются под действием прямых солнечных лучей или яркого рассеянного света, а на уменьшение продолжительности и интенсивности освещения реагируют негативно. Как правило, это растения южных регионов, где солнечная активность позволяет им получать не менее 10 – 12 тысяч люксов за год. В эту категорию входят большинство огородных культур и плодоносящих деревьев, цитрусовые, пальмы, суккуленты, бугенвиллия, жасмин, гибискус, гардения, пассифлора, розы и пр.

Растения и свет

Не только интенсивность светового потока оказывает огромное влияние на жизнедеятельность растений. Также культуры очень чувствительны и к продолжительности освещения.

В зависимости от этой реакции различают растения длинного дня, для которых требуется световой период не менее 12 – 18 часов в сутки (пшеница, рожь, лен, ячмень, овес, чечевица, горох, мак, свекла и др.) и растения короткого дня, довольствующиеся солнечным светом в течение 8 – 12 часов (кукуруза, просо, соя, фасоль, табак, хлопчатник и пр.).

У культур, входящих в группу растений короткого дня, сокращение осветительного периода вызывает ускорение перехода от вегетативной стадии развития к репродуктивной. Обратная реакция наблюдается у растений длинного дня: более продолжительный осветительный период стимулирует более раннее вступление в фазу цветения.

Путем длительных экспериментов и наблюдений ученым удалось установить, что определенные диапазоны солнечного спектра по-разному воздействуют на растения, а с помощью правильно подобранного спектрального освещения можно стимулировать увеличение урожайности культур на 30%.

Влияние солнца на качество почвы

Следует еще указать на один фактор, оказывающий влияние на рост растений. Это деятельность микроорганизмов в почве. Их роль в жизни растений огромна, так как они задерживают азот в почве.

Было доказано, что жизнь (в частности численность) микроорганизмов (аммонифицирующих бактерий) зависит от солнечной активности.

Образно говоря, солнечная активность сама удобряет почву. В зависимости от солнечной активности (не от температуры и влажности почвы!) изменяется численность различных микроорганизмов, таких как аммонифицирующие и нитрифицирующие бактерии, аэробные целлюлозоразлагающие бактерии и водоросли, которые используют в своей деятельности нитраты (а не только аммиак почвы).

Влияние солнечной радиации на организм человека

Говоря о влиянии солнца на организм человека, невозможно определить точно. Какое воздействие на здоровье человека оказывается, вред или польза. Лучи Солнца выделяют ультрафиолетовое и инфракрасное излучение. Лучи солнца — это как килокалории, полученные из пищи. Их дефицит приводит к истощению, и в избыточных количествах они вызывают ожирение. Так и в этой ситуации. Умеренное количество солнечной радиации оказывает положительное влияние на организм, тогда как избыток ультрафиолетового излучения провоцирует появление ожогов и развитие многочисленных заболеваний. Влияние

Положительное влияние инфракрасного излучения

Основная особенность инфракрасных лучей — они создают тепловой эффект, которые оказывают положительное влияние на организм человека. Нагревательный элемент способствует расширению кровеносных сосудов и нормализации кровообращения. Тепло оказывает расслабляющее действие на мышцы, обеспечивая легкий противовоспалительный и обезболивающий эффект. Под воздействием тепла увеличивается обмен веществ, нормализуются процессы усвоения биологически активных компонентов. Инфракрасное излучение солнца стимулирует мозг и зрительный аппарат.

Интересно! Благодаря солнечному излучению синхронизирует биологические ритмы тела, начиная с режимов сна и бодрствования. Лечение инфракрасными лучами солнца улучшает состояние кожи и устраняет угри. Теплый свет поднимает настроение и улучшает эмоциональный фон человека. А также улучшают качество спермы у мужчин и потенцию.

Положительное влияние ультрафиолетового излучения

Несмотря на все споры о негативном влиянии ультрафиолетового излучения на организм, его отсутствие может привести к серьезным проблемам со здоровьем. Это один из важнейших факторов существования. И нехватка ультрафиолетового света в организме, привносит такие изменения: Во-первых, ослабляет иммунную систему (прежде всего влияние оказывается на клетку в организме). Это связано с нарушением поглощения витаминов и минералов, нарушением метаболизма на клеточном уровне.

Солнце восполняет нехватку витамина Д

Существует тенденция к развитию новых или обострению хронических заболеваний, чаще всего возникающих осложнений. Отмеченналетаргия, синдром хронической усталости, снижение уровня эффективности. Отсутствие ультрафиолетового света для детей предотвращает образование витамина D и вызывает замедление. Однако нужно понять, что чрезмерная солнечная активность не принесет пользу организму.

Все тела излучают радиацию

Все тела излучают радиацию в зависимости от их температуры. Это дается Закон Стефана-Больцмана который утверждает, что энергия, излучаемая телом, прямо пропорциональна его температуре в четвертой степени. Вот почему и Солнце, и горящее дерево, и наше собственное тело, и даже кусок льда непрерывно излучают энергию.

Это заставляет нас задать себе вопрос: почему мы можем «видеть» излучение, испускаемое Солнцем или горящим куском дерева, и мы не можем видеть излучение, которое мы излучаем, поверхность Земли или кусок? льда? Также, это во многом зависит от температуры, достигаемой каждым из них, и, следовательно, количество энергии, которое они преимущественно излучают. Чем больше температуры достигают тела, тем большее количество энергии они излучают в своих волнах, и поэтому они будут более заметными.

Солнце имеет температуру 6.000 К и излучает в основном волны видимого диапазона (обычно известные как световые волны), оно также излучает ультрафиолетовое излучение (которое имеет большую энергию и поэтому обжигает нашу кожу при длительных выдержках) и Остальное, что он излучает, — это инфракрасное излучение, которое не воспринимается человеческим глазом. Вот почему мы не можем воспринимать излучение, которое излучает наше тело. Температура тела человека составляет около 37 градусов по Цельсию, а излучение, которое оно излучает, находится в инфракрасном диапазоне.

Значение для Земли и человека

Солнце влияет на всё живое, являясь источником энергии для растений, животных и людей. Оно обеспечивает существование биосферы и оказывает влияние на формирование климата. Благодаря солнечной радиации происходит непрерывное движение воздушных масс, что является ключевым фактором в поддержании постоянного состава атмосферы.

Излучение Солнца обеспечивает непрерывность цикла испарения влаги с поверхности Земли и выпадения осадков. Для зелёных растений это главное условие существования фотосинтеза.

Электромагнитная составляющая содержит инфракрасные и ультрафиолетовые лучи. Поток света оказывает положительное действие на человека.

  • Улучшает метаболизм, сон, общее самочувствие.
  • Ультрафиолет способствует синтезу витамина D, повышает иммунитет.

Однако слишком продолжительное световое излучение может вызывать бессонницу, раздражительность, переутомление. Например, такие жалобы поступают от жителей Заполярья. А также чрезмерное злоупотребление ультрафиолетом грозит:

  • риском появления раковых клеток,
  • высушиванием кожи, появлением пигментных пятен,
  • ослаблением иммунитета,
  • расстройством зрительной функции.

Многие века учёными изучается энергия, приносимая на Землю Солнцем. Понимание, каков её состав и какие существуют виды солнечной радиации помогло применять её в космонавтике, сельском хозяйстве, теплоснабжении и разработке биологических систем. Для организма человека она жизненно необходима. Это самый важный источник энергии для всего живого.

Что такое конвекция?

Когда жидкость кипит, она перемешивается. Так же может вести себя и газ. Огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ спускается вниз. Похоже, что солнечное вещество кипит и перемешивается. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда все же проникают горячие потоки из более глубоких, конвективных слоев. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.

Географическое распределение суммарной радиации

Итак, рассмотрим распределение годовых и месячных количеств (сумм) суммарной радиации по Земному шару. Мы видим, что оно не вполне зонально: изолинии (т. е. линии равных величин) радиации на картах не совпадают с широтными кругами. Отклонения эти объясняются тем, что на распределение радиации по Земному шару оказывают влияние прозрачность атмосферы и облачность.

Годовые количества суммарной радиации (рис. 2) составляют в тропических и субтропических широтах свыше 140 ккал/см2. Они особенно велики в малооблачных субтропических пустынях, а в северной Африке достигают 200-220 ккал/см2. Зато над приэкваториальными лесными областями с их большой облачностью (над бассейнами Амазонки и Конго, над Индонезией) они снижены до 100-120 ккал/см2. К более высоким широтам обоих полушарий годовые количества суммарной радиации убывают, достигая под 60° широты 60-80 ккал/см2. Но затем они снова растут — мало в северном полушарии, но весьма значительно над малооблачной и снежной Антарктидой, где в глубине материка они достигают 120-130 ккал/см2, т. е. величин, близких к тропическим и превышающих экваториальные. Над океанами суммы радиации ниже, чем над сушей.


Рис. 2. Годовая суммарная радиация, ккал/см2 в год.

В декабре (рис. 3) наибольшие суммы радиации, до 20-22 ккал/см2 и даже выше, в пустынях южного полушария. Но в облачных районах у экватора они снижены до 8-12 ккал/см2. В зимнем северном полушарии радиация быстро убывает на север; к северу от 50-й параллели она менее 2 ккал/см2 и несколько севернее полярного круга равна нулю. В летнем южном полушарии она убывает к югу до 10 ккал/см2 и ниже в широтах 50-60°. Но затем она растет -до 20 ккал/см2 у берегов Антарктиды и свыше 30 ккал/см2 внутри Антарктиды, где она, таким образом, больше, чем летом в тропиках.


Рис. 3. Суммарная радиация в декабре, ккал/см2 в мес.

В июне (рис. 4) наивысшие суммы радиации, свыше 22 ккал/см2, над северо-восточной Африкой, Аравией, Иранским нагорьем. До 20 ккал/см2 и выше они в Средней Азии; значительно меньше, до 14 ккал/см2, в тропических частях материков южного полушария. В облачных приэкваториальных областях они, как и в декабре, снижены до 8-12 ккал/см2. В летнем северном полушарии суммы радиации убывают от субтропиков к северу медленно, а севернее 50° с. ш. возрастают, достигая 20 ккал/см2 и более в Арктическом бассейне. В зимнем южном полушарии они быстро убывают к югу, до нуля за южным полярным кругом.


Рис. 4. Суммарная радиация в июне, ккал/см2 в мес.

Наблюдайте за Солнцем!

Посмотрите на карту на рисунке 37. Вы видите, как меняется полуденная высота Солнца в ключевые даты года на разных широтах нашей страны. Определите для своего города или посёлка максимальную (полуденную) высоту Солнца в дни равноденствия и в дни летнего и зимнего солнцестояния.

В дни равноденствия над экватором (на широте 0°) Солнце в полдень находится в зените, т. е. прямо над головой, иод углом 90° к поверхности Земли. А над полюсами (на широте 90°) в этот день Солнце находится почти на самой линии горизонта, т. е. под углом около 0°, и оно не заходит и не восходит, а круглые сутки движется вокруг наблюдателя. Чтобы определить максимальную высоту Солнца над горизонтом в дни равноденствия, надо из 900 вычесть широту места.

В день летнего солнцестояния Солнце в нашем полушарии как будто смещается на север, оно находится в зените над Северным тропиком и становится выше над горизонтом на широту тропика, т. е. на 23°27′. Это число надо прибавить к тому, что мы получили для дней равноденствия. А в день зимнего солнцестояния, наоборот, Солнце спускается на Южный тропик, и его высота над горизонтом будет на то же число меньше.

Также интересно проследить, как меняется продолжительность дня на разных широтах. Когда «солнце поворачивает на лето» в Северном полушарии (т. е. по мере приближения летнего солнцестояния), продолжительность дня возрастает. Чем севернее мы находимся, тем прирост дневного времени больше. Например, для Сочи, Махачкалы и Владивостока (около 43° с. ш.) долгота дня 22 июня составляет 15 ч (т. е. прирост но сравнению с днём весеннего равноденствия 3 ч). Для Санкт-Петербурга, Вологды и Магадана (60° с. ш.) — 18,5 ч, т. е. прирост 6,5 ч. Наконец, на линии Северного полярного круга продолжительность дня 22 июня достигает 24 ч, т. е. Солнце вообще не заходит за горизонт. А что происходит па самом Северном полюсе? Там уже 3 месяца (со дня весеннею равноденствия) длится полярный день — Солнце не заходит за горизонт, а ходит по кругу.

Начиная с летнего солнцестояния долгота дня в Северном полушарии сокращается, причём особенно быстро в высоких широтах (где летом были более длинные дни). В зимнее солнцестояние день в Санкт-Петербурге и на его широте сокращается до 5 ч, а в Сочи и других местах на этой широте — до 9 ч. На Северном полюсе 24 сентября полярный день сменяется полярной ночыо.

Запомните

Солнечная радиация. Суммарная солнечная радиация. Радиационный баланс.

Это я знаю

1. Что называется солнечной радиацией? В каких единицах она измеряется? От чего зависит её величина?

2. На какие виды разделяют солнечную радиацию?

3. Почему меняется поступление солнечной радиации по сезонам года?

4. Для чего необходимо знать высоту Солнца над горизонтом?

5. Выберите верный ответ. Общее количество радиации, достигшей поверхности Земли, называется: а) поглощённой радиацией; б) суммарной солнечной радиацией; в) рассеянной радиацией.

6. Выберите верный ответ. При движении к экватору величина суммарной солнечной радиации: а) увеличивается; б) уменьшается; в) не изменяется.

7. Выберите верный ответ. Самый большой показатель отражённой радиации имеет: а) снег; б) чернозём; в) песок; г) вода.

8. Как вы думаете, можно ли в летний пасмурный день загореть?

Это я могу

9. По карте на рисунке 36 определите суммарную солнечную радиацию для десяти городов России. Какой вывод вы сделали?

Это интересно

10. Опишите, чем различаются сезоны года в вашей местности (природные условия, жизнь людей, их занятия). В какой из сезонов года жизнь наиболее активна?

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*102 Дж/м2, на широте около 60° обоих полушарий он снижается до 8*102-13*102 Дж/м2.

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат. convectio — доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в составе атмосферы углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector